A New Phenolic Compound from Thamnolia vermicularis

Bei JIANG, Shuang Xi MEI, Quan Bin HAN, Wei XIANG, Han Dong SUN*
Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

Abstract

A new phenolic compound, thamnolin (1), was isolated from the extract of Thamnolia vermicularis. Its structure was determined as 6-tricosyl-2,4-dimethoxy-phenol by spectral methods.

Keywords: Thamnolia vermicularis, phenolic compound, thamnolin.

Thamnolia vermicularis (Sw.) Ach., an algo-fungus symbiont with a commercial name "Xuecha", has long been used for medicinal purposes in common people of Yunnan province to cure sore throats, hypertension, cough caused by lung-heat, tidal fever due to yin deficiency, summer-heat and neurasthenia ${ }^{1}$. It was reported previously that several phenolic compounds, thamnolic acid 2, vermicularin ${ }^{3}$ and baemycesi acid ${ }^{3}$, had been isolated from this plant and some of those had been identified to be the main bio-active constituents of the plant ${ }^{1,3}$. In continuation of our research on phenolic compounds in the Thamnolia species, a new compound, thamnolin (1), as well as several known compounds, are obtained from the EtOAc extract of T. vermicularis. In this paper, we wish to report the structural elucidation of $\mathbf{1}$.

Figure 1 Key HMBC correlations of compound 1

Thamnolin (1), amorphous substance, IR (KBr) $v_{\max } 3379$ (br), 2918, 2850, 1616, $1503,1466,1430,1388,1302,1221,1200,1151,1114,1077,1052,926,823,811,787$, $722 \mathrm{~cm}^{-1}$; EIMS m/z (rel. int \%) $476\left(\mathrm{M}^{+}, 3\right), 462(5), 448\left[\mathrm{M}^{+}-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right]$ (58), 434 (19), $420\left[\mathrm{M}^{+}-2 \times \mathrm{CH}_{2}=\mathrm{CH}_{2}\right]$ (52), 406 (2), $392\left[\mathrm{M}^{+}-3 \times \mathrm{CH}_{2}=\mathrm{CH}_{2}\right]$ (100), 378 (4), 194 $\left[\mathrm{M}^{+}-\mathrm{C}_{20} \mathrm{H}_{42}\right](2), 180\left[\mathrm{M}^{+}-\mathrm{C}_{21} \mathrm{H}_{44}\right]$ (5), 168 [Fragment A] ${ }^{+}$(98), 167 [Fragment B] ${ }^{+}$(52) (Figure 2) ${ }^{4}, 153$ (14), 139 (38), 137 (13), 125 (5), 109 (3), 95 (6), 83 (4), 77 (6), 69 (8),

57 (12). It had a molecular formula of $\mathrm{C}_{31} \mathrm{H}_{56} \mathrm{O}_{3}$ established by HREIMS (obsd 476.4237, calcd 476.4230). From its spectral data of IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, it was clearly observed that compound 1 possessed a basic skeleton of phenol with the substitutes of two methoxy groups and one alkyl. Also observed from the spectra of EIMS and DEPT were that the alkyl was tricosyl, a linear alkyl group, because it consisted of twenty-two methylenes and one methyl. The positions of all substitutes were determined by the experiment of HMBC, and the key correlations of HMBC were shown in Figure 1. Thus, compound $\mathbf{1}$ was elucidated as 6-tricosyl-2,4-dimethoxy-phenol. The assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for compound $\mathbf{1}$ vide Table 1.

Figure 2 Characteristic mass spectral fragments of compound 1

$m / z=168\left[\right.$ Fragment A] ${ }^{+}$

$m / z=167\left[\right.$ Fragment B] ${ }^{+}$

Table $1{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Data for Compound $\mathbf{1}$ in CDCl_{3}

proton	${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta \mathrm{ppm}$ (mult, J in Hz)	carbon	${ }^{13}$ C NMR (100 MHz) $\delta \mathrm{ppm}$ (multiplicity)
3	6.33 (1H, d, 2.80)	1	137.66 (s)
5	6.26 (1H, d, 2.80)	2	146.76 (s)
1^{\prime}	2.58 (2H, t, 7.76)	3	96.77 (d)
2^{\prime}	1.57 (2H, m)	4	152.79 (s)
3'	1.30 (2H, m)	5	106.01 (d)
$4^{\prime}-22^{\prime}$	1.23 (38H, overlap)	6	128.80 (s)
23^{\prime}	0.86 (3H, t, 6.8)	1^{\prime}	31.91 (t)
OMe-2	3.82 (3H, s)	2^{\prime}	30.03 (t)
OMe-4	3.73 (3H, s)	$3^{\prime}-20^{\prime}$	29.67 (t)
		21^{\prime}	29.33 (t)
		22^{\prime}	22.65 (t)
		23^{\prime}	14.03 (q)
		OMe-2	55.97 (q)
		OMe-4	55.75 (q)

References

1. Z. W. Xie, C. S. Fan, Z. Y. Zhu et al, The collection of Chinese Traditional and Herbal Drugs, The People's Health Publishing House, Beijing, 1996, Section B, 527-528.
2. C. A. Wachtmeister, Acta Chem. Scand., 1955, 9, 1395.
3. H. D. Sun, X. Y. Shen and Z. W. Lin, Acta Botanica Yunnanica, 1985, 7, 109-113.
4. A. G. González, J. B. Barrera, E. M. R. Pérez and C. E. H. Padrón, Planta Med., 1992, 58, 214-218.

Received May 15, 2000

